
Available online at www.sciencedirect.com
Tetrahedron Letters 49 (2008) 750–754
A Julia olefination approach to the synthesis of functionalized enol
ethers and their transformation into carbohydrate-derived spiroketals

Matthieu Corbet, Benjamin Bourdon, David Gueyrard *, Peter G. Goekjian *
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Abstract

A synthesis of spiroketals from carbohydrate lactones is reported. A modified Julia olefination is used to synthesize trisubstituted and
highly functionalized exo-glycals, which were subsequently transformed into spiroketals under acidic conditions.
� 2007 Elsevier Ltd. All rights reserved.
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Spongistatin 1
Substituted spiroketals are common substructures in
natural products from various sources including insects,
microbes, plants, fungi, and marine organisms (Fig. 1).1

In particular, 1,6-dioxaspiro[4.5]decanes and 1,7-dioxa-
spiro[5.5]undecanes have attracted considerable interest
from synthetic organic chemists over the past several
decades.2 The elaboration of functionalized spiroketals
from carbohydrate precursors has proven to be a produc-
tive approach. General strategies include the addition of
acetylide anions to carbohydrate lactones,3 C-alkylation
of carbohydrate-derived dithioacetals,4 ring closing
metathesis of C-alkenyl substituted allyl glycosides,5 and
others.6 Endo- and exo-glycals have proven to be useful
intermediates for the synthesis of spiroketals. They have
been cyclized under mild acidic or electrophilic conditions
or have been further transformed into 1-deoxy-1-halo-
ketose allyl glycosides, which were cyclized under radical
conditions.7 However, the main drawback in the use of
exo-glycals8 as precursors of spiroketals has been that the
suitably functionalized trisubstituted exo-glycals could
not be prepared easily from the available carbohydrate
derivatives, such as lactones. Only a few stepwise methods,
including Ramberg–Backlund olefination,9 addition–
elimination reactions,10 palladium-catalyzed coupling
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reactions,11 or Wittig reactions12 provide an access to
carbohydrate exo-glycals.

As part of an ongoing project on exo-13 and endo-14

glycal derivatives, we report a two-step procedure for the
synthesis of spiroketals from the easily available
OH
Okadaic acid

Fig. 1. Spiroketal units in natural products.
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Table 1
Optimization of the exo-glycal synthesis

Entry Lactone/sulfone ratio Yield (%) Z/E ratio

1 1/1.2 52 2/3
2 1/1.5 59 3/2
3 1.2/1 67 2/3
4 1.5/1 39 1/1
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Scheme 2. Synthesis of the exo-glycal 4.
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carbohydrate-derived lactones. Our recently published
methodology using modified Julia olefination conditions
for the synthesis of enol ethers from carbohydrate lactones
is extended here to functionalized trisubstituted exo-
glycals. These are subsequently converted into [4.5] and
[5.5] spiroketals by intramolecular spiroketalisation under
conventional acidic conditions described by Ley.15 We
chose the readily available 2-deoxy-3,4,6-tri-O-benzyl-D-
glucono-1,5-lactone16 as starting material to address the
influence of the C-2 substituent on the sugar on the enol
ether synthesis.17 As most natural spiroketals are unsubsti-
tuted on the carbon adjacent to the spirocenter, it is of
interest to show whether the C-2 substituent exerts an
essential steric, electron-withdrawing, or Thorpe–Ingold
effect. Functionalized benzothiazol-2-yl sulfones were
prepared from 2-mercaptobenzothiazole by base-mediated
S-alkylation followed by ammonium molybdate catalyzed
oxidation with hydrogen peroxide in good yields (Scheme
1).18

Initial studies toward spiroketal 5 focused on optimizing
the coupling conditions and on the compatibility of the
protecting groups. The preparation of exo-glycal 419 under
the Barbier conditions used previously (LiHMDS, THF,
�78 �C, 1.2 equiv of sulfone, then treatment of the isolated
hemiacetal with DBU)13 gave the desired product in 52%
yield (Table 1, entry 1). A short study allowed us to
increase the yield to 67% by modifying the lactone-to-sul-
fone ratio. The yield improved either upon adding a large
excess of the sulfone (entry 2) or upon working with a
slight excess of lactone (entry 3). Indeed, a-lithiated sulf-
ones have been shown to undergo self-condensation side-
reactions,20 which can account for the observed results
(see Scheme 2).

Acidic treatment of the enol ether 4 in protic media (p-
toluenesulfonic acid in methanol) gave the corresponding
spirocyclic product 521 as a single diastereoisomer by
NMR in excellent yield (Scheme 3). Indeed, as described
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Scheme 4. Synthesis of functionalized exo-glycals 6 and 7.
by Deslonchamps et al.,22 the thermodynamic product 5,
which benefits from two anomeric effects, was obtained
with strong acids in protic solvents such as methanol (see
Scheme 4).

This result shows that there is no dominant influence of
the functionality on the sulfone nor of the C-2 substituent
of the sugar on the olefination step, and establishes the
feasibility of a spiroketal synthesis using this methodology.
To further evaluate the scope of this sequence, more
highly functionalized exo-glycals were prepared. Conden-
sation of benzothiazol-2-yl sulfones 2b and 2c with the
sugar lactone under the conditions described above gave
exo-glycals 623 and 724 in 54% and 59% yields, respectively
(see Scheme 5).
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Scheme 5. Spirocyclization reaction under acidic conditions.
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Spirocyclization of the enol ether 6 with p-toluene-
sulfonic acid in methanol led to a mixture of [5.5] and
[4.5] spiroketals 8a and 8b in 95% yield. Acetylation and
separation of the mixture by flash chromatography allowed
the structures to be assigned based on the chemical shift of
the protons a to the acetoxy group.25 Treatment of 7 under
the same conditions gave the corresponding spirocyclic
product 1026 as a single diastereoisomer in high yield.

The spirocyclization reaction was also attempted under
kinetic conditions3 in CDCl3 in the presence of CSA. The
reaction was followed by NMR and yielded a 2.8:1 ratio
of diastereomeric spiroketals after 15 min, which progres-
sively isomerized in favor of the thermodynamic isomer
10. Extrapolating back to t = 0 would suggest an initial
kinetic selectivity of the order of 3.3:1 in favor of the
non-thermodynamic spiroketal 11. The configuration of
spiroketal 10 was confirmed by NOE experiments. NOE
enhancements are observed between H-5 and H-50, as
would be expected from structure I in its most stable con-
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Fig. 2. Configuration and conformation of spiroketal 10.
formation. In addition, no correlation was observed
between H-30 and H-3 or H-1, which would indicate the
presence of diastereoisomer II (see Fig. 2).

In conclusion, we have developed a route to function-
alized exo-glycals, which were transformed into [4.5] and
[5.5] spiroketals under acidic conditions. Further studies
targeting spiroketals of biological interest are in progress.
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H10b); 2.94 (dd, 1H, J = 13.9, 4.3 Hz, H2eq); 2.30–2.00 (m, 3H, H8a,b

and H2ax), 1.37 and 1.31 (2s, 6H, 2CH3). NMR (13C, CD3OD,
75 MHz), d (ppm): 152.1 (C1); 139.9, 139.7 and 139.4 (Car); 129.5,
129.4, 129.2, 129.1, 129.0, 128.8, 128.7 (15CHar); 110.2 (C(CH3)2);
106.5 (C7); 80.5 (C4); 80.3 (C3); 78.8 (C9); 77.3 (C5); 75.4 (C6); 74.4,
72.6 and 70.3 (CH2Ph); 69.8 (C10); 31.5 (C2); 30.3 (C8); 27.3 (CH3);
25.9 (CH3).

24. (S)-2-(3-((4R,5S,6R)-4,5-Bis(benzyloxy)-6-(benzyloxymethyl)tetra-
hydro-2H-pyran-2-ylidene)propyl)-1,4-dioxaspiro[4.5]decan (7) Elu-
ent: petroleum ether/ethyl acetate (7/1). Yield: 59% (yellow oil).
HRMS: C38H46O6Na calcd, 621.3192; found, 621.3165. The E isomer
cannot be obtained in pure form (Z isomer) ½a�25

D +28 (c 1, CHCl3).
NMR (1H, CD3OD, 300 MHz), d (ppm): 7.36–7.18 (m, 15H, Har);
4.79 (d, 1H, J = 11.1 Hz, CH2Ph); 4.69–4.50 (m, 6H, CH2Ph and H7);
4.00 (m, 2H, H10 and H11a); 3.73 (m, 2H, H6a,b); 3.64–3.42 (m, 4H, H3,
H4, H5 and H11b); 2.70 (dd, 1H, J = 13.5, 4.5 Hz, H2eq); 2.22–2.07 (dd,
3H, J = 6.6, 6.6 Hz, H8a,b and H2ax), 1.62–1.36 (m, 12H, 5CH2 and
H9). NMR (13C, CD3OD, 75 MHz), d (ppm): 149.9 (C1); 139.9, 139.7
and 139.5 (Car); 129.4, 129.3, 129.1, 128.9, 128.7, 128.6 (15CHar);
110.4 and 110.2 (C(CH2R)2 and C7); 80.7 (C4); 80.2 (C3); 78.9 (C10);
76.8 (C5); 75.3 (C6); 74.4, 72.2, 70.5 and 70.1 (CH2Ph and C11); 37.7;
36.3; 35.1, 35.0, 26.3, 25.0, 24.9, 22.1 (C2, C8,C9 and CH2).

25. (3S,8R,9S,10R)-9,10-Bis(benzyloxy)-8-(benzyloxymethyl)-1,7-dioxa-
spiro[5.5]undecan-3-yl acetate (9a) ½a�25

D +37 (c 1, CHCl3). NMR (1H,
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CD3OD, 300 MHz), d (ppm): 7.38–7.17 (m, 15H, Har); 4.85 (d, 1H,
J = 11.1 Hz, CH2Ph); 4.75 (dddd, 1H, J = 15.8, 10.6, 5.8, 5.8 Hz,
H40 Þ; 4.69–4.50 (m, 5H, CH2Ph); 3.90 (ddd, 1H, J = 11.3, 8.9, 5.3 Hz,
H3); 3.72 (m, 2H, H6a,b); 3.68–3.53 (m, 2H, H 50a and H5); 3.48 (dd,
1H, J = 8.7, 8.7 Hz, H4); 3.40 (dd, 1H, J = 10.4, 10.4 Hz, H50axÞ; 2.24
(dd, 1H, J = 13.0, 5.1 Hz, H2eq); 2.01 (s, 3H, CH3); 1.95–1.80 (m, 3H,
H30a;b and H20bÞ; 1.70 (m, 1H, H20aÞ; 1.52 (dd, 1H, J = 12.8, 12.8 Hz,
H2ax). NMR (13C, CDCl3, 75 MHz), d (ppm): 170.2 (CO), 138.6,
138.5 and 138.4 (Car); 128.3, 128.2, 127.8, 127.6, 127.5, 127.4
(15CHar); 96.3 (C1); 78.2 (C4); 77.9 (C3); 74.8 (CH2Ph); 73.3 (CH2Ph);
71.7 (CH2Ph); 71.5 (C5); 69.2 (C6); 67.8 ðC40 Þ; 61.1 ðC50 Þ, 39.7 (C2);
33.5 ðC20 Þ; 24.5 ðC30 Þ, 21.0 (CH3). HRMS: C33H38O7Na calcd,
569.2515; found, 569.2520. ((2S,7R,8S,9R)-8,9-Bis(benzyloxy)-7-
(benzyloxymethyl)-1,6-dioxaspiro[4.5]decan-2-yl)methyl acetate (9b)
½a�25

D +28 (c 1, CHCl3). NMR (1H, CD3OD, 300 MHz), d (ppm): 7.38–
7.17 (m, 15H, Har); 4.82 (d, 1H, J = 11.3 Hz, CH2Ph); 4.69–4.43 (m,
5H, CH2Ph); 4.25 (dddd, 1H, J = 11.1, 9.4, 5.5, 5.5 Hz, H40 Þ; 4.10 (dd,
1H, J = 11.7, 4.0 Hz, H 50aÞ; 4.04 (dd, 1H,J = 11.7, 6.0 Hz, H 50bÞ; 3.92
(ddd, 1H, J = 11.5, 8.9, 5.1 Hz, H3); 3.74 (m, 1H, H5); 3.70–3.58 (m,
2H, H6a,b); 3.45 (dd, 1H, J = 9.0, 9.0 Hz, H4); 2.24 (dd, 1H, J = 12.6,
5.1 Hz, H2eq); 2.16 (m, 1H, H30aÞ; 2.04 (s, 3H, CH3); 1.99 (m, 1H,
H20aÞ; 1.92–1.80 (m, 1H, H 20bÞ; 1.75 (dd, 1H, J = 12.4, 12.4 Hz, H2ax);
1.68 (m, 1H, H30bÞ. NMR (13C, CD3OD, 75 MHz), d (ppm): 172.7
(CO), 140.0, 139.9 and 139.5 (Car); 129.4, 129.3, 129.2, 128.1, 129.0,
128.9, 128.6 (15CHar); 108.4 (C1); 79.9 (C4); 79.6 (C3); 77.7 ðC40 Þ; 75.8
(CH2Ph); 74.3 (CH2Ph); 73.1 (C5); 72.6 (CH2Ph); 70.4 (C6); 67.3 ðC50 Þ,
39.6 (C2); 37.6 ðC20 Þ; 26.7 ðC30 Þ, 20.8 (CH3). HRMS: C33H38O7Na
calcd, 569.2515; found, 569.2520.

26. Selected data: ((2S,6S,8R,9S,10R)-9,10-Bis(benzyloxy)-8-(benzyl-
oxymethyl)-1,7-dioxaspiro[5.5]undecan-2-yl)methanol (10) Eluent:
petroleum ether/ethyl acetate (7/2). Yield: 92% (colorless oil). ½a�25

D

+42 (c 0.5, CHCl3). NMR (1H, C6D6, 500 MHz), d (ppm): 7.48–7.18
(m, 15H, Har); 5.16 (d, 1H, J = 11.4 Hz, CH2Ph); 4.80 (d, 1H, J =
11.4 Hz, CH2Ph); 4.64–4.54 (m, 4H, CH2Ph); 4.28 (ddd, 1H, J = 11.0,
8.8, 5.0 Hz, H3); 4.04 (m, 1H, H5); 3.92 (dd, 1H, J = 10.4, 4.7 Hz,
H6a); 3.87–3.78 (m, 3H, H6b, H4 and H50 Þ; 3.49 (m, 2H, H60a;bÞ; 2.28
(dd, 1H, J = 12.9, 5.4 Hz, H2eq); 2.05 (ddddd, 1H, J = 13.2, 13.2, 13.2,
4.1, 4.1 Hz, H30aÞ; 1.72–1.58 (m, 2H, H 20a and H2ax); 1.47 (m, 1H,
H30bÞ; 1.35 (ddd, 1H, J = 13.2, 13.2, 4.4 Hz, H20bÞ; 1.32 (m, 1H, H40eqÞ;
1.25 (dddd, 1H, J = 12.6, 12.6, 12.6, 3.9 Hz, H40axÞ. NMR (13C,
CD3OD, 75 MHz), d (ppm): 140.7, 140.5 and 140,4 (Car); 129.5,
129.4, 129.3, 129.1, 128.8, 128.7, 128.6, 128.5 (15CHar); 98.4 (C1);
80.1 (C4); 79.2 (C3); 75.7 (CH2Ph); 74.1 (CH2Ph); 72.4 (C5); 72.3
(CH2Ph); 72.2 ðC50 Þ; 70.8 (C6); 66.8 ðC60 Þ; 42.2 (C2); 35.6 ðC20 Þ; 27.9
ðC40 Þ; 19.8 ðC30 Þ. HRMS: C32H38O6Na calcd, 541.2566; found,
541.2569.
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